
ChE503  A. Z. Panagiotopoulos 1 
 

 BOLTZMANN STATISTICS AND IDEAL MONOATOMIC GAS1

 
The formalism developed in the previous section is powerful, but there are only 
few cases for which we have the mathematical sophistication to actually 
evaluate the partition functions.  In this section, we will perform the 
explicit calculation of partition functions for the case of a system of non-
interacting particles.  The reason we can perform the calculation for this case 
is that we can separate the total energy of the system (the Hamiltonian, in 
statistical mechanics terminology) as a sum of independent contributions.  
There are many other examples in physics in which the Hamiltonian, by a proper 
and clever selection of variables, can be written as a sum of individual terms.  
Although these individual terms need not be Hamiltonians for actual individual 
molecules, they are nevertheless used to define the so-called quasi-particles, 
which mathematically behave like independent real particles (photons, phonons 
in solids etc).  First, let us consider the canonical partition function for a 
system of distinguishable particles, in which the Hamiltonian can be written as 
a sum of individual terms.  Denote the individual energy states by {εja}, where 
the superscript denotes the particle (as they are distinguishable), and the 
subscript denotes the state.  In this case, the canonical partition function 
becomes: 
 

 Q(N,V,T) = Σ e─Uj/kT   =  Σ      e
─(εia+εjb+εkc+⋅⋅⋅)/kT

    = 
            j            i,j,k,... 
 

                       =  Σ e─εi
a/kT ⋅ Σ e─εj

b/kT ⋅ Σ e─εk
c/kT ⋅⋅⋅⋅ 

                          i            j            k 
 
                       =  qa⋅qb⋅qc⋅⋅⋅ (1) 
 

where   q(V,T) = Σ e─εi/kT  (2) 
            i 
 
Equation (1) shows that if we can write the N-particle Hamiltonian as a sum of 
independent terms, and if the particles are distinguishable, then the 
calculation of Q(N,V,T) reduces to a calculation of q(V,T).  Since calculation 
of q(V,T) requires knowledge of only the energy values of an individual 
particle, its evaluation is quite feasible.  In most cases, {εi} is a set of 
molecular energy states; thus q(V,T) is called a molecular partition function.   
 
If the energy states are the same for all particles, then equation (1) becomes: 
 

 Q(N,V,T) = [q(V,T)]N   (distinguishable particles) (3) 
 
Another useful application of equation (1) is to the molecular partition 
function itself.  Often, the Hamiltonian for an individual molecule can be 
approximated by a sum of Hamiltonians for the various degrees of freedom for 
the molecule: 
 
 H ≈ Htranslational + Hrotational + Hvibrational + Helectronic => (4) 
 

                         
    1 Material in this section is based on Chapters 4, 5 and 7 of D.A. 

McQuarrie, "Statistical Thermodynamics", Harper and Row, 1976. 
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 => qmolecule = qtranslational⋅qrotational⋅qvibrational⋅qelectronic (5) 
 
Thus, it is not only possible to reduce an N-body problem to a one-body 
problem, but it is possible to reduce it further into the individual degrees of 
freedom of the single particles.   
 
Equation (3) is an attractive result, but atoms and molecules are, in general, 
not distinguishable.  When the particles are indistinguishable, the first sum 
over i,j,k in equation (1) cannot be immediately decomposed into a product of 
sums over i,j,k, because a state with {εia,εjb,...} is the same as one with 
{εja,εib,...}.  Assuming that there are many more states than particles, there 
are N! as many such "identical states" that are included in the sum in eq. (1) 
for every single real state (N! = 1⋅2⋅3⋅4⋅⋅⋅⋅⋅N is the number of possible orderings 
of N particles).  Therefore, the correct expression for the partition function 
for the case of a system of indistinguishable particles, is: 

             1 

 Q(N,V,T) = ─── [q(V,T)]N   (indistinguishable particles) (6) 
             N! 
 
Equation (6) is an extremely important result, since it reduces a many-body 
problem to a one-body problem.  The assumption on which it is based, namely 
that there are many more states than particles is very well satisfied for all 
systems with atoms or molecules at room temperatures and above.  Near absolute 
zero, or for particles that are very light (e.g. electrons), this is not so, 
and the problem becomes more complicated because the quantum nature of the 
particles must be taken into account explicitly.  When this assumption is 
valid, we say that particles obey Boltzmann statistics (or the "classical 
limit"). 
 
The translational partition function
 
In this section, we will evaluate the translational partition function.  From 
quantum mechanics, the energy states of a particle of mass m in a cubic "box" 
of dimensions L×L×L are 
 
                h2

 εn ,n ,n   =  ──── (n
x y z

               8mL
x
2 + ny2 + nz2)  nx,ny,nz = 1,2,3,⋅⋅⋅ (7) 

2

 
where h = 6.6262⋅10─27 erg⋅s is Planck's constant. 
 
We substitute this into equation (2) to get 
  
                ∞                             ∞       βh2n2      3 

 q (trans V,T) =    Σ        e
─βεnx,ny,nz  =   (   Σ  exp(─ ─────)  ) (8) 

              nx,ny,nz = 1                    n=1       8mL2

 
This summation cannot be evaluated in closed form, that is, cannot be expressed 
in terms of any simple analytic function.  This does not present a serious 
difficulty, however, for the following reason:  The successive terms in this 
summation differ so little from each other that the terms vary essentially 
continuously, and the summation can, for all practical purposes, be replaced by 
an integral.  If we do this, equation (8) becomes: 
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                       ∞      βh2n2       3       2πmkT   3/2      
 q (trans V,T) =  ( ∫ exp(─ ──────) dn  )   =  ( ────── )    V (9) 
                  0       8mL2                 h2            
                                                 ∞            √π 

where we have replaced L3 with V, and have used  ∫exp(─x2)dx = ── 

                                                 0             2 

The quantity (h2/2πmkT)½ that occurs in the translational partition function 
has units of length and is usually denoted by Λ.  In this notation, eq. (9) can 
be written as 
 
 qtrans = V/Λ3 (10) 
 
The length Λ can be given the following physical interpretation.  The average 
translational kinetic energy of an ideal gas molecule can be calculated 
immediately from eqs (9) and the definition of an ensemble average, 
 
              Σ ε ⋅exp(─βε )             i i

 <ε >  =  ──────────────    (11) trans

                    q           
 
as: 
                    ∂lnqtrans
 <εtrans>  = kT2 ( ─────────── ) (12) 
                       ∂T       V,N 
 
we find that <εtrans> =  3/2 kT, and since εtrans = p2/2m, where p2 is the momentum 
of a particle, we can say that the average momentum is essentially (mkT)½.  
Thus, Λ is essentially h/p, which is equal to the De Broglie wavelength of the 
particle.  Consequently, Λ is called the thermal De Broglie wavelength.  The 
condition for the application of classical Boltzmann statistics is that the 
thermal De Broglie wavelength must be small compared to the relevant 
intermolecular length scale.  For a dilute gas, relevant length scales are the 
average distance between particles, ρ─1/3, and σ (the diameter of particles).   
 
 
Thermodynamic functions
 
The Helmholtz energy of an ideal monoatomic gas is given by 
 

                                    2πmkT  3/2  V⋅e 
 A(N,V,T) = ─ kT lnQ = ─ NkT ln ( ( ───── )     ─── )      (15) 
                                      h2         N 
 
                          
For most systems, the electronic contribution to A is negligible.  The 
thermodynamic energy U is 
 
                         3      

 U =  kT2 (∂lnQ/∂T)N,V = ─ NkT   (16) 

           
The pressure is 

              2      

 
 P = kT (∂lnQ/∂V)N,T = NkT/V (17) 
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The pressure equation results because q(V,T) is of the form f(T)⋅V, and is 
correct even if the electronic contributions to the partition function are not 
negligible (since the electronic partition function is independent of volume).   
 The entropy S and the chemical potential are, respectively: 
 

                          2πmkT  
3/2 

V⋅e5/2  
 S = (U ─ A)/T = Nk ln ( (──────)    ────── )   (18) 
                            h2         N 
                                          
 μ = ─kT (∂lnQ/∂N)V,T = ─kT ln(q/N)  = 
 
                    2πmkT 3/2  

       =  ─kT ln ( (─────)   kT ) + kTlnP (19) 
                      h2

 
We can rewrite equation (19) as  
 
 μ = μ0(T) + kTlnP (20) 
 
which is the familiar expression of μ for an ideal gas from classical 
thermodynamics.  The difference is that now μ0(T) is no longer a mysterious, 
ill-defined function of temperature. 
 
Classical translational partition function and the Maxwell-Boltzmann 
distribution
 
Equation (9) gives the translational partition function of an ideal gas from 
summing over all possible quantum states.  The same result can be obtained from 
a classical description of the system.  The classical Hamiltonian of a 
monoatomic gas is simply the kinetic energy: 
 
 H = 1/(2m) (px2 + py2 + pz2) (21) 
 
where px,py,pz are the momenta of the particle in the x-, y- and z- directions 
and m is the mass of the particle. 
 
The partition function can be written as the integral over phase space of the 
Hamiltonian: 
                    β(px2 + py2 + pz2) 
 q  =  ∫∫∫∫∫∫ exp( ─ ──────────────────) dpclass

                           2m 
xdpydpzdxdydz (22) 

 
The integral over dxdydz simplifies to the volume of the container, and the 
integrations over momenta in the three spacial dimensions are equivalent: 
 
              +∞               3 

 qclass =  V (  ∫ exp(─βp2/2m)dp )  =  (2πmkT)3/2 V (23) 
             ─∞ 
which is the same result as equation (9), with the difference being the lack of 
a factor of h3 in equation (23).  Clearly, we cannot expect Planck's constant 
to pop up in a purely classical treatment!  The probability P that the single 
particle momentum has the magnitude p is: 
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          exp(─βp2/2m) 
 P(p) =  ──────────────  (24) 

           (2πmkT)3/2 
 
Equation (24) is usually called the Maxwell-Boltzmann distribution.  The 
translational partition function for any system (and not just for an ideal gas) 
has the same form as shown above, because the potential energy of an 
interacting system depends only on positions of particles, and thus can be 
separated from the kinetic energy.  Particles in gases, liquids, and solids 
thus have the same distributions of momenta (velocities), provided that the 
system is thermally equilibrated.  Equation (24) can be used to calculate 
various averages of kinetic parameters.  For example, the average magnitude of 
the momentum of a particle is  
 
        ∞  ∞  ∞                                  
  ∫  ∫  ∫ p exp(─βp2/2m) dpxdpydpz      
        -∞ -∞ -∞                                   
 <p> = ─────────────────────────────────  =    

                 (2πmkT)3/2                     
 
  π  2π  ∞                                      ∞ 
  ∫  ∫   ∫ p3sinθ exp(─βp2/2m) dp dφ dθ        4π ∫ p3 exp(─βp2/2m) dp 
 0  0  0                                       0 
 ───────────────────────────────────────   =  ────────────────────── = 

         (2πmkT)3/2                                  (2πmkT)3/2  
 
    ∞ 
 2π ∫ p2 exp(─βp2/2m) dp2

         0                           2π(2mkT)2 

 ────────────────────────  =  ────────────  =   (8mkT/π)1/2 (25) 

         (2πmkT)3/2            (2πmkT)3/2 

 
 
From equation (24), by substituting p = u⋅m, the probability of a given 
velocity u is: 
 
         exp(─βmu2/2) 
 P(u) = ──────────── 

          (2πkT/m)3/2 
 
The fraction of molecules, f(u), with velocities between u and u+du is obtained 
by taking into account that there are more states at higher velocities; more 
formally, transforming to spherical coordinates and integrating over φ and θ: 
 
                  m   3/2 
 P(u) du = 4π  ( ────)     u2 exp(─mu2/2kT) du (26) 
                 2πkT 
 
which is called the Maxwell-Boltzmann distribution of molecular velocities. 
 
A graph of the Maxwell-Boltzmann distribution for N2 at different temperatures 
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is shown in the graph below. 
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